Methyl-transfer by Methylcobalamin to Tetracyanoethylene

Yueh-Tai Fanchiang

Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Mixtures of methylcobalamin and tetracyanoethylene in CH₃OH–H₂O media display a sharp absorption band at 420 nm ($\epsilon = 1.1 \times 10^4 \, \text{I} \, \text{mol}^{-1} \, \text{cm}^{-1}$ and formation constant $= 3.9 \times 10^2 \, \text{I} \, \text{mol}^{-1}$, 23 °C), indicating the formation of a charge-transfer complex between the corrin π -orbitals and tetracyanoethylene prior to the methyl-transfer step; the relevance to Co–C bond cleavage is discussed.

The mechanisms of methyl-transfer from methylcobalamin (CH_3-B_{12}) to an electrophile are of considerable interest.¹ These reactions are generally thought to involve direct displacement of the cobalt by attack at the α (saturated) carbon. We show here the first example of the formation of a charge-transfer complex between the corrinoid and the attacking electrophile prior to Co–C bond cleavage.

In the presence of NH₄Cl, 3.0×10^{-5} M CH₃-B₁₂ was quantitatively demethylated to H₂O-B₁₂ by 5.0×10^{-4} M tetracyanoethylene (TCNE) in CH₃OH-H₂O (1:1). This reaction reached completion in *ca.*7 days (23 °C). Isosbestic points at 495 and 390 nm were observed. Demethylation does not occur in the absence of a proton donor. Spectrophotometric titration at 350 nm shows that the demethylation occurs with a 1:1 stoicheiometry. The ¹³C n.m.r. examination of the reaction solution of ¹³CH₃-B₁₂ (90% enriched) and TCNE shows that the ¹³C resonance was shifted downfield from 9.1 p.p.m. (¹³C-Co)² to 15.7 p.p.m. (neat Me₄Si). Based on these observations, the methyl-transfer product is tentatively proposed to be either CH₃(CN)₂CC(CN)₂(H) or CH₃-N=CH-C(CN)=C(CN)₂.

The electronic spectra of CH₃-B₁₂ in the presence and absence of TCNE (*ca.* 130-fold excess, in the absence of proton donor) are shown in Figure 1(a). A sharp new absorption band appears at 420 nm. A Benesi–Hilderbrand plot at this wavelength (Figure 2) yields $\epsilon = 1.1(\pm 0.15) \times 10^4 \text{ l mol}^{-1}$ cm⁻¹ and a formation constant $K_1 = 3.9(\pm 0.80) \times 10^2 \text{ l mol}^{-1}$ (23 °C). It should be noted that the charge-transfer bands of organometallic δ -donor [*e.g.* (CH₃)₂Hg]–TCNE complexes are broad (λ_{max} 345–437 nm) with rather small formation constants and molar absorptivities.³ This sharp contrast indicates that the Co–C bond is not involved directly. Concurrent with the appearance of the new band at 420 nm, the π - π^* transition band of CH₃-B₁₂ at 522 nm begins to shift to shorter wavelengths. This shift terminates at 466 nm at sufficiently high [TCNE]. Since 522 and 466 nm are the α -bands of the base-on and base-off CH₃-B₁₂, respectively,⁴ this blue shift indicates clearly that the base-on CH₃-B₁₂ is converted into the base-off form at high [TCNE]. A separate spectrophotometric titration at 522 nm gives the base-on \rightleftharpoons base-off equilibrium constant K_2 ca. 40 l mol⁻¹ (23 °C).

The 270 MHz¹H n.m.r. spectra of CH₃-B₁₂ (1.0 \times 10⁻³ M in CD₃OD-D₂O) in the presence of a 10- and 80-fold excess of

Figure 2. Benesi–Hilderbrand plot of the charge-transfer bands of CH₃-B₁₂–TCNE complexes in CH₃OH–H₂O (1:1). A = absorbance. Concentration of CH₃-B₁₂ = 3.2 × 10⁻⁵ M; temperature: 23 °C; λ :420 nm; light length: 1 cm.

Figure 1. Electronic spectra of B_{12} compounds in the presence of TCNE in 1:1 CH₃OH-H₂O. An equal concentration of TCNE was used in the reference cell to eliminate the absorption of TCNE. (a) ----: 3.2×10^{-5} M CH₃-B₁₂, ----: 3.2×10^{-5} M CH₃-B₁₂ + 4.1×10^{-3} M TCNE; (b) ----: 3.2×10^{-5} M methylcobinamide, ---: 3.2×10^{-5} M methylcobinamide + 4.1×10^{-3} M TCNE; (c) ----: 3.8×10^{-5} M H₂O-B₁₂⁺ + 4.1×10^{-3} M TCNE.

Figure 3. 270 MHz ¹H n.m.r. spectra of CH₃-B₁₂ (1.0 × 10⁻³ M) in 1:1 CD₃OD-D₂O, 23 °C. (a) [TCNE] = 0; (b) [TCNE] = 1.0×10^{-2} M; (c) [TCNE] = 8.0×10^{-2} M.

methylated TCNE

Scheme 1

TCNE are shown in Figure 3 (only the parts at high field are shown). With an 80-fold excess of TCNE, CH_3 - B_{12} appears largely in the base-off form. This is confirmed by the spectrum of 1.0×10^{-3} M CH_3 - B_{12} in 0.1 M HCl. Note that the CH_3 -Co resonance (the furthest upfield resonance) is shifted upfield on conversion from the base-on into the base-off form. Using 0.466 and 0.983 [internal sodium 3-(trimethylsilyl)tetradeuteriopropionate] as the chemical shifts of $Cl\alpha$ - CH_3 for base-on and base-off CH_3 - B_{12} , respectively,⁵ and 0.575 with a 10-fold excess of TCNE, the rate constant for the base-on \rightleftharpoons base-off conversion is estimated to be $> 6 \times 10^4 1 \text{ mol}^{-1} \text{ s}^{-1}$ (23 °C).

The electronic spectra of methylcobinamide (CH_3-B_{12}) without the 5, 6-dimethylbenzimidazole ribose moiety) and

 $H_2O-B_{12}^+$ in the presence of TCNE also display new absorption bands at 420 and 406 nm, respectively [Figures 1(b) and 1(c)]. These bands are broader than that of CH₃-B₁₂. Taken together, these data indicate that the signal at 420 nm is the chargetransfer band of CH₃-B₁₂, arising from the interaction of the corrin π -orbitals and TCNE. Neither the Co-C bond nor the 5,6-dimethylbenzimidazole is involved directly.

In summary, spectral studies provide evidence for the formation of a charge-transfer complex between the corrinoid and TCNE. At high [TCNE], a second TCNE interacts with the 5.6-dimethylbenzimidazole moiety resulting in a base-on into base-off conversion. The methyl transfer reaction occurs in the presence of a proton donor. The overall methyl-transfer reaction can be described by the mechanism shown in Scheme 1. However, it should be noted that the charge-transfer complex is not necessarily on the reaction co-ordinate for demethylation and may merely be a side alley. It is noteworthy that the base-on into base-off conversion is frequently observed in the methyl-transfer reactions from CH3-B12 to an electrophile, such as Hg^{2+6} or $PdCl_4^{2-.7}$ However, this is the first time that a charge-transfer complex between a corrin ring and an electrophile has been demonstrated. The significance of this observation is that it reveals that the methyl-transfer between CH₃-B₁₂ and an electrophile can be discussed in terms of a charge-transfer complex and an electron-transfer reaction.

Received, 6th August 1982; Com. 936

References

- G. Agnes, S. Bendle, H. A. O. Hill, F. R. Williams, and R. J. P. Williams, J. Chem. Soc., Chem. Commun., 1971, 850; J. M. Wood, Science, 1974, 183, 1049; M. D. Johnson, Acc. Chem. Res., 1978, 11, 57.
- 2 H. P. C. Hogenkamp, N. A. Kohlmiller, R. Hausinger, T. E. Walker, and N. A. Matwiyoff, J. Chem. Soc., Dalton Trans., 1981, 1668.
- 3 J. Y. Chen, H. C. Gardner, and J. K. Kochi, J. Am. Chem. Soc., 1976, 98, 6150; S. Fukuzumi, K. Mochida, and J. K. Kochi, *ibid.*, 1979, 101, 5961.
- 4 J. M. Pratt, 'Inorganic Chemistry of Vitamin B₁₂,' Academic Press, London, 1972, p. 44.
- D. Hensens, H. A. O. Hill, J. Thornton, A. M. Turner, and R. J. P. Williams, *Philos. Trans. R. Soc. London, Soc. B.* 1976, 273, 353; O. D. Hensens, H. A. O. Hill, C. E. McClelland, and R. J. P. Williams, 'B₁₂,' Vol. 1, ed. D. Dolphin, Wiley, New York, 1982, p. 463.
- 6 R. E. DeSimone, M. W. Penley, L. Charbonneau, S. G. Smith, J. M. Wood, H. A. O. Hill, J. M. Pratt, S. Ridsdale, and R. J. P. Williams, *Biochim. Biophys. Acta*, 1973, 304, 851.
- 7 W. H. Scovell, J. Am. Chem. Soc., 1974, 96, 3451.